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Introduction

Motivation

o Complex, time-dependent problems

o Real-time analyses

o Model Predictive Control
o Many-query analyses

o Optimization

o Uncertainty-Quantification
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Introduction

Model Order Reduction Framework

L Full-order model——> Data collection — Compression

Approximation 1: Projection

II. |Reduced-order model|-> Data collection — Compression
| |

lApproxima‘tion 2: System approximation

111. | Reduced-order model + system approximation

[Carlberg et. al. 2011]
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Introduction

High-Dimensional Model

Consider the nonlinear system of Ordinary Differential
Equations (ODE), usually arising from the semi-discretization
of Partial Differential Equation,

dw

% = F(W’ ta y’)
where
w e RY state vector
une R4 parameter vector
F:RY xR xR?—RY nonlinearity of ODE

This is the High-Dimensional Model (HDM).
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Introduction

Fully Discretization of HDM

@ Our approach to Model Order Reduction leverages
dimensionality reduction at the fully discrete level

e Full, implicit (single-step) discretization of the governing
equation yields a sequence of nonlinear systems of
equations:

R(w™ t,, p;w D) =0, ne€{1,2,...,Ng}
where

w(™ = w(t,)

R:RY xR xR? - RN

From this point, we drop the dependence of R on the previous

time step w1,
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Introduction

Model Order Reduction with Local Bases

@ The goal of reducing the computational cost and resources
required to solve a large-scale system of ODEs is attempted
through dimensionality reduction

e Specifically, the (discrete) trajectory of the solution in state
space is assumed to lie in a low-dimensional affine subspace

w® ~ w4 §(wn=D)y™

q)(w(n—l)) c RV *kw(w=1) Reduced Basis

y(") € RFv (w(n=) Reduced Coordinates

where k,(w™ 1) < N
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Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Overview

e In practice, Ny bases are computed in an offline phase:
Pt c RNXHU

e Each basis, ®', is associated with a representative vector in
state space, wf:

o Then, ®(w(™ 1) = &', where
|[w=D — wi|| < |lw) — wi|| for all j € {1,2,..., Ny}

Contrived Example

) - [ |
o) = o]
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Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Data Collection

e HDM sampling (snapshot collection)
o Simulate HDM at one or more parameter configurations
{wy,...,m,} and collect snapshots w’)
o Combine in snapshot matrix W

Figure : Contrived Example: HDM
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Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Data Organization

@ Snapshot clustering
o Cluster snapshots using the k-means algorithm based on
their relative distance in state space
o Store the center of each cluster, w’.
o W partitioned into cluster snapshot matrices W;

Figure : Contrived Example: Snapshot Clustering
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]
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Local Reduced-Order Models Ofﬂ}ne FTreRe
Online Phase

Hyperreduction

Data Compression

o Modify snapshot matrices W; by subtracting a reference
vector, w from each column W; = W; — we’

o Apply POD method to each cluster: ® = POD(W))

Figure : Contrived Example: Basis Construction

HDAC
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Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Overview

o The MOR assumption is substituted into the HDM to
obtain the over-determined nonlinear system of equations:

@ Since the above system does not have a solution, in
general, we seek the solution that minimizes the residual of
the HDM in the chosen affine subspace:

y(n) = arg m1n| ’R(W(nil) + (I)Zya tna IJ’) ’ |2
y€ERFw

This is the Reduced-Order Model (ROM)



Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Inconsistency

o Recall the MOR assumption:

where w(@itch) is the most recent state to initiate a switch
between bases.

@ Recall the reduced bases are constructed as

®' = POD (W, — we')

@ Basis construction consistent with MOR assumption only
(switch)

W =W
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Offline Phase
Local Reduced-Order Models Online Phase

Hyperreduction

Solution: Fast Basis Updating

o We seek a reduced basis of the form:

&; = POD(W,; — wlswitch)gT)
= POD(WZ — \TveT + (V_V _ W(Switch))eT)
= POD(W; + (w — wwiteh))eT)
o & is the (truncated) left singular vectors of a matrix that is

a rank-one update of a matrix, W;, whose (truncated) left
singular vectors is readily available, ®;.

o Fast updates available [Brand 2006].
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Offline Phase
Online Phase

Local Reduced-Order Models

Hyperreduction

Figure : Contrived Example: ROM Solution

No Basis Updating Basis Updating

¢ Local ROM
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Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Figure : Contrived Example: ROM Solution

No Basis Updating Basis Updating

¢ Local ROM
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Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Figure : Contrived Example: ROM Solution

No Basis Updating Basis Updating

. o )
0 05| 1
0 04 1
> 02 o2 |
HDM 1
Subspace 1
s 02 1
®  Local ROM
04 ot ‘ ‘ ‘ ‘
oL 4 05 0 05 !

Zahr and Farhat



Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Figure : Contrived Example: ROM Solution

No Basis Updating Basis Updating
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Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Figure : Contrived Example: ROM Solution
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Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Figure : Contrived Example: ROM Solution

No Basis Updating Basis Updating
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Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Figure : Contrived Example: ROM Solution
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Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Figure : Contrived Example: ROM Solution
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Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Figure : Contrived Example: ROM Solution
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Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Figure : Contrived Example: ROM Solution
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Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Figure : Contrived Example: ROM Solution

No Basis Updating Basis Updating

= 02 o2 |
HDM 1
Subspace 1
e o2
+ Local RO
04 ot ‘ ‘ ‘ ‘

pel -1 -05 o 05 1

Zahr and Farhat



Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Figure : Contrived Example: ROM Solution
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Offline Phase
Online Phase
Hyperreduction

Local Reduced-Order Models

Extension to Hyperreduction (hROM)

o For many classes of ODEs, the above framework is not
sufficient to achieve speedups or a reduction in required
computational resources

e e.g. nonlinear, time-variant, or parametric ODEs

e For the nonlinear case, methods exist for creating reduced
bases ®% and ®? for the nonlinear residual and Jacobian,
respectively [Chaturantabut and Sorensen 2009, Carlberg
et al 2011].

e Enables pre-computation of terms that were previously
iteration-dependent

o Further reduction available by using a sample mesh, i.e. a

well-chosen subset of the entire mesh [Carlberg et. al.
2011).
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Burger’s Equation (Non-predictive)
Application Potential Nozzle (Predictive)

1D Burger’s Equation (Shock Propagation)
High-Dimensional Model

e N = 10,000 degrees of freedom

8Uéf,t) N af(léfﬁ) —g(z) Yz el0,I]
U(z,0)=1, Vzel0,L]
U(0,t) = u(t), ¢>0

where g(x) = 0.02¢%022 f(U) = 0.5U?, and u(t) = 5.

Reduced-Order Model
o Ny =4 bases of size: 9, 5, 4, 4
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Burger’s Equation (Non-predictive)
Application Potential Nozzle (Predictive)

High-Dimensional Model
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Burger’s Equation (Non-predictive)
Application Potential Nozzle (Predictive)

Clustering Results

Snapshot Clustering Cluster Centers

|

Cluster Number

|
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Burger’s Equation (Non-predictive)
Potential Nozzle (Predictive)

Application

Reduced Basis Modes

Global Basis Local Bases
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Application

Simulation Results

Burger’s Equation (Non-predictive)
Potential Nozzle (Predictive)

Error vs. Time

Model 11, No Updating

Model 111, No Updating
——— Model I1, With Updating

= = = Model 111, With Updating)

o 5 10 is 25 %0 E3 W0

20
Time

Symbols indicate basis switch

Solution Snapshots
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Burger’s Equation (Non-predictive)
Application Potential Nozzle (Predictive)

Basis Usage
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Burger’s Equation (Non-predictive)
Application Potential Nozzle (Predictive)

Potential Nozzle Flow

Nozzle Shape
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Burge: Equation (Non-predictive)
Application Potential Nozzle (Predictive)

Parametric Study - Setup
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Burger’s Equation (Non-predictive)
Application Potential Nozzle (Predictive)

Parametric Study - Results
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Conclusion

Other Application: MEMS

% Parametric study

Model Degrees of GNAT Relative speedup
freedom error
HDM N = 4050 = = | 317 | -
ROM with k=(88) | k =(20,20) 0.57% 18.24 17.37
exact T =(20,20)
update
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Conclusion

Conclusions

o Local model reduction method
o attractive for problems with distinct solution regimes
e model reduction assumption and data collection are
inconsistent
@ Local model reduction with online basis updates
o addresses inconsistency of local MOR
e injects “online” data into pre-computed basis
o Future work
e application to 3D turbulent flows
e application to nonlinear structural dynamics
e use as surrogate in PDE-constrained optimization and
uncertainty quantification
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